This website use cookies, to enhance navigation performances. Clicking OK or continuing to browse the user accepts cookie utilization.

logotype



Nutritional Values of the main feeder vertebrates and invertebrates

by Luca Cavigioli

The philosopher Ludwig Feuerbach is certainly not known to most people, but most of us have used in some speech, his famous quote: "We are what we eat."
It is probably that he is not referring to the fact that almost any tissue, organ and system, which we are composed, is derived from the food; but this topic is precisely to our interest.
All substances that are essential to our existence (excluding the oxygen we get through breathing), are taken by us through the food.
In the same way which it is recommended for us, even the bred animal species will require a diet that provides them with all the necessary nutrients in adequate amounts, and it is very important that this holds for any nutrient due to the law of the minimum or Liebig's Law.
Originally this law, also called the "principle of least", was born to explain the growth of plants, which is not controlled by the total amount of resources available but the availability of the most poor. Unlike the plant, for the most of the animals, the growth is not influenced directly by the scarcest substance.
However, the principle of least remains true for the welfare and the health of the guests in our terrariums. In fact, the strong lack of a nutrient, below the minimum value required for the animal, will create a physiological imbalance with results difficult to assess but potentially very dangerous (which may even lead the animal to death).
The best case scenario is represented by a general weakening of the animal, this causes a reduction in the efficiency of the immune system (immunodepression from malnutrition), which makes the specimen more prone to diseases and parasitic infestations.
Which are the quantities needed for each nutrient?
Unfortunately it is not possible know them precisely and not even provide in the right amount. Bearing in mind that, in the wild, the animals are able to find all the substances they need because they having evolved with a specific food availability; the first rule for a proper diet in captivity will be: not upset the feed ecology of the housed species.
For this reason it is essential to inquire about the natural history of our animals. After this necessary premise: if a reptile or an amphibian in nature prey arthropodsm in captivity we will provide them arthropods; if another species feeds on small rodents, we will provide them mice, in order not to upset their feeding habits.
It is clear, however, that for feeding such an insectivorous saurian, we can not provide all the species of arthropods in its distribution area; the common insects that we will offer as food in captivity will therefore already an approximation compared to the natural diet.
Following the same logic, for those species with a broad food spectrum, in captivity we will offer the widest variety of prey consistent with their natural diet. For species with a feeding specialization, focusing on a single type of prey, we will instead provide only one type of food, as long as nutritionally comparable to that preyed on in the wild.
So, the second “golden rule”, which is valid especially for species with broad food spectrum, is feed our animals with a diet as varied as possible.
With regard to the amount of food, is always appropriate (as in all areas of breeding exotic animals) follow the basic tips of experienced breeders. Their suggestions, now easily available on the web or available by contacting them, will help the novice breeder to not run into undersized diet, with the risk of immune-depressing the animal; or to feed it over leading the specimen to obesity and issues, no less serious, related to it.
Another very important point to consider about the offered prey, in addition to the amount and variety of the same, concerns their quality. Animal feeder, fed little or bad will be "empty shells" poor in nutrients. The initial quote "You are what you eat" also applies to the prey.

In addition to being convenient in the economic point of view; raising feeder animals, which we will use as food, allow us to provide our animals with a varied diet nutritionally valid. If you can not start breeding live food, after the purchase is advisable to adequately feed the prey before offering to our animals.
In the following table can be found the values ​​of some of the major categories of nutrients of the most common prey used in  terraristic. I want to clarify that these data are purely indicative, being strongly influenced by diet in which the animals were subjected.
Some categories of prey, which are repeated in the table, are related to several studies in which they were analyzed.

Bibliography

Beisel, W. R. (1982). Synergism and antagonism of parasitic diseases and malnutrition. Review of infectious Diseases, 4(4): 746-750

Bernard, J. B., Allen, M. E., and Ullrey, D. E. (1997). Feeding captive insectivorous animals: Nutritional aspects of insects as food. Nutrition Advisory Group Handbook, Fact Sheet, 3: 1-7

Bird, D.M., and S.K. Ho (1976). Nutritive value of whole-animal diets for captive birds of prey. Raptor Res., 10:45-49.

Borysenko, M., and Lewis, S. (1979). The effect of malnutrition on immunocompetence and whole body resistance to infection in Chelydra serpentina. Developmental & Comparative Immunology, 3: 89-100

Clum, N. J., Fitzpatrick, M. P., and Dierenfeld, E. S. (1996). Effects of diet on nutritional content of whole vertebrate prey. Zoo Biology, 15(5), 525-537.

Crissey, S. D., Slifka, K. A., and Lintzenich, B. A. (1999). Whole Body Cholesterol, Fat, and Fatty Acid Concentrations of Mice (Mus domesticus) Used as a Food Source. Journal of Zoo and Wildlife Medicine, 30(2): 222-227

Dierenfeld, E. S., Alcorn, H. L., and Jacobsen, K. L. (2002). Nutrient composition of whole vertebrate prey (excluding fish) fed in zoos. [Electronic resource]. 20 pp.

Donoghue, S. (1998). Nutrition of pet amphibians and reptiles. In Seminars in Avian and Exotic Pet Medicine, 7(3): 148-153

Harvey, C. J., McSporran, K. D., Jakob-Hoff, R. M., Potter, J. S. and Shaw, S. D. (2010). Fungal disease in reptiles. New Zealand Veterinary Journal, 58(2): 110

Rumpold, B. A. and Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823

Stephenson, L. S., Latham, M. C. and Ottesen, E. A. (2000). Malnutrition and parasitic helminth infections. Parasitology, 121(7): 23-38

The percentages of protein, fat and minerals are relative to the total dry residue. The insects who have completed high-Ca diet were fed using food supplemented with Calcium.

Species

Dry residue

Protein

Fat

Minerals

Gross energy

Calcium

Phosphorus

Magnesium

Sodium

Potassium

Copper

Iron

Zinc

Manganese

%

%

%

%

kcal/g

%

%

%

%

%

mg/kg

mg/kg

mg/kg

mg/kg

Cavia porcellus neonato maschio

29,10

51,20

34,70

14,10

5,95

 

 

 

 

 

 

 

 

 

Cavia porcellus 10 settimane maschio

31,30

51,40

46,10

9,20

6,99

3,02

 

0,07

 

 

5,6

56,4

46,4

6,6

Mesocricetus auratus giovane

30,30

49,80

34,70

7,50

5,98

2,51

2,03

0,12

0,46

0,88

12,0

237,0

94,0

45,0

Mesocricetus auratus  

32,00

51,20

26,00

7,20

5,14

 

 

 

 

 

 

 

 

 

Mus musculus neonato <3 g

19,10

64,20

17,00

9,70

4,87

1,17

 

0,11

 

 

19,2

181,3

82,5

0,2

Mus musculus neonato <3 g

26,10

50,80

34,40

8,00

6,23

3,54

1,63

0,12

0,51

1,15

11,0

158,7

77,0

3,6

Mus musculus giovane 3-10 g

18,20

44,20

30,10

8,50

6,65

1,47

 

0,09

 

 

13,4

153,6

75,4

13,1

Mus musculus giovane 3-10 g

28,70

59,20

23,80

10,00

5,84

2,96

1,84

0,12

0,49

1,03

12,1

311,9

96,5

9,5

Mus musculus adulto >10 g

32,70

55,80

23,60

11,80

5,25

2,98

1,72

0,16

 

 

6,7

137,9

67,5

7,7

Mus musculus adulto >10 g

32,60

56,90

23,50

11,30

5,77

2,64

1,91

0,13

0,43

1,02

8,0

251,0

89,4

11,5

Oryctolagus cuniculus neonato

15,40

72,10

13,00

14,90

5,06

 

 

 

 

 

 

 

 

 

Oryctolagus cuniculus  

28,10

63,50

15,30

9,40

5,41

2,35

1,68

0,16

0,54

0,94

16,0

302,0

86,0

16,9

Rattus norvegicus neonato <10 g

20,80

57,90

23,70

12,20

5,30

1,85

 

0,14

 

 

60,6

275,8

113,6

6,2

Rattus norvegicus giovane 10-50 g

30,00

56,10

27,50

14,80

5,55

2,07

 

0,12

 

 

11,3

133,2

81,9

2,6

Rattus norvegicus giovane 10-50 g

23,00

60,30

26,80

11,80

5,67

 

 

 

 

 

 

 

 

 

Rattus norvegicus adulto >50 g

33,90

61,80

32,60

9,80

6,37

2,62

1,48

0,08

 

 

6,3

148,0

62,1

11,0

Rattus norvegicus  

31,10

60,40

35,00

10,90

5,67

3,45

1,91

0,15

0,43

1,05

7,5

194,9

92,1

15,3

Gallus gallus DOC

25,60

64,90

22,40

6,40

5,80

1,69

1,22

0,05

0,71

0,80

5,2

119,5

97,4

3,9

Gallus gallus DOC

22,80

67,70

16,50

8,20

5,82

1,73

1,21

0,08

0,82

0,81

4,0

157,4

93,9

3,3

Gallus gallus adulto

32,50

42,30

37,80

9,40

5,90

2,22

1,40

0,50

 

 

3,6

122,2

116,1

10,1

Gallus gallus adulto

40,50

45,00

51,10

6,20

6,58

1,68

1,30

0,09

0,26

0,53

3,0

40,0

45,0

3,0

Acheta domestica adulto

31,00

64,90

13,80

5,70

5,34

0,14

0,99

0,13

0,49

1,29

28,0

58,0

188,0

31,0

Acheta domestica adulto

 

64,38

22,80

5,10

 

0,21

0,78

 

 

 

 

 

 

 

Acheta domestica adulto

 

66,56

22,08

3,57

4,55

 

 

 

 

 

 

 

 

 

Acheta domestica adulto

 

70,75

18,55

5,03

 

0,13

0,96

 

 

 

 

 

 

 

Acheta domestica adulto dieta hi-Ca

30,30

65,20

12,60

9,80

5,40

0,90

0,92

0,11

0,57

1,41

29,0

80,0

237,0

56,0

Acheta domestica grillo giovane

 

55,00

9,80

9,10

 

1,29

0,79

 

 

 

 

 

 

 

Acheta domestica microgrillo

47,40

 

 

 

 

0,22

1,27

0,14

0,43

1,62

14,0

200,0

268,0

33,0

Acheta domestica ninfa

 

67,25

14,41

4,80

4,14

 

 

 

 

 

 

 

 

 

Acheta domestica ninfa

 

70,56

17,74

4,84

 

0,12

1,10

 

 

 

 

 

 

 

Blaberus sp,

 

43,90

34,20

3,33

 

 

 

 

 

 

 

 

 

 

Blaptica dubia

 

35,60

6,75

2,00

 

0,20

 

 

 

 

 

 

 

 

Bombyx mori

 

58,00

35,00

4,00

5,55

 

 

 

 

 

 

 

 

 

Bombyx mori larva

 

53,76

8,09

6,36

3,90

 

 

 

 

 

 

 

 

 

Bombyx mori larva

 

69,84

9,52

11,11

 

0,10

1,37

 

 

 

 

 

 

 

Bombyx mori pupa

 

48,70

30,10

8,60

 

0,16

0,47

 

 

 

 

 

 

 

Chironomus sp,

9,90

52,80

9,70

11,30

 

0,38

0,90

0,12

0,62

0,35

30,0

2940,0

115,0

22,0

Daphnia sp,

91,70

55,20

6,60

10,80

 

0,10

1,17

0,16

0,98

0,99

39,0

3049,0

250,0

73,0

Drosophila melanogaster

29,60

70,10

12,60

4,50

5,12

0,10

1,05

0,08

0,42

1,06

18,0

138,0

171,0

39,0

Drosophila melanogaster

 

56,25

17,90

5,20

 

0,14

1,10

 

 

 

 

 

 

 

Drosophila melanogaster larva

21,20

40,30

29,40

9,80

5,57

0,59

2,30

1,89

0,09

1,28

16,0

235,0

176,0

110,0

Drosophila melanogaster pupa

32,40

52,10

10,50

14,10

4,84

0,77

2,73

2,41

0,12

1,66

25,0

1728,0

200,0

108,0

Galleria mellonella

 

41,25

51,40

3,30

 

0,06

1,20

 

 

 

 

 

 

 

Galleria mellonella

 

33,98

60,00

1,45

 

0,06

0,47

 

 

 

 

 

 

 

Galleria mellonella larva

34,10

42,40

46,40

2,70

7,06

0,11

0,62

0,11

0,05

0,72

9,0

22,0

76,0

3,0

Galleria mellonella larva

 

38,80

58,55

2,17

6,50

 

 

 

 

 

 

 

 

 

Galleria mellonella larva dieta hi-Ca

39,90

 

 

2,50

 

0,50

0,33

 

 

 

 

 

 

 

Lumbricus terrestris

16,30

60,70

4,40

11,40

4,93

1,52

0,96

0,16

0,44

0,87

9,0

1945,0

1119,0

29,0

Musca domestica larva

 

63,99

24,31

5,16

5,52

2,01

1,32

 

 

 

 

 

 

 

Musca domestica larva dry

93,70

56,80

20,00

6,80

6,07

0,41

1,13

0,30

0,72

1,28

50,0

658,0

320,0

167,0

Musca domestica pupa

 

63,10

15,50

5,30

 

 

 

 

 

 

 

 

 

 

Musca domestica pupa dry

96,40

58,30

15,80

6,80

5,70

0,42

1,18

0,36

0,55

1,34

54,0

574,0

319,0

302,0

Periplaneta americana

38,70

53,90

28,40

3,30

6,07

0,20

0,50

0,08

0,27

0,87

14,0

90,0

57,0

5,0

Periplaneta americana

 

65,60

28,20

2,48

 

 

 

 

 

 

 

 

 

 

Tenebrio molitor

 

52,70

32,80

 

 

0,11

0,77

 

 

 

 

 

 

 

Tenebrio molitor adulto

38,60

63,70

18,40

3,10

5,79

0,07

0,78

0,19

0,16

0,92

22,0

77,0

113,0

10,0

Tenebrio molitor adulto

 

60,20

20,80

2,70

4,28

0,06

0,76

 

 

 

 

 

 

 

Tenebrio molitor adulto

 

65,29

14,88

3,31

3,80

 

 

 

 

 

 

 

 

 

Tenebrio molitor larva

37,60

52,70

32,80

3,20

6,49

0,08

0,83

0,23

0,15

0,93

18,0

42,0

95,0

12,0

Tenebrio molitor larva

 

47,18

43,08

3,08

5,77

0,05

0,70

 

 

 

 

 

 

 

Tenebrio molitor larva

 

49,43

38,07

2,84

 

 

 

 

 

 

 

 

 

 

Tenebrio molitor larva

 

49,08

35,17

2,36

5,40

0,04

0,75

 

 

 

 

 

 

 

Tenebrio molitor larva

 

47,70

37,70

3,00

5,54

 

 

 

 

 

 

 

 

 

Tenebrio molitor pupa

39,00

54,60

30,80

3,40

6,43

0,11

0,77

0,22

0,14

0,91

19,0

43,0

100,0

14,0

Tenebrio molitor pupa

 

53,10

36,70

3,20

5,50

 

 

 

 

 

 

 

 

 

Tubifex sp,

18,40

47,80

20,10

4,50

5,57

0,11

0,85

0,09

0,28

0,98

10,0

1091,0

166,0

16,0

Tubifex sp,

11,80

46,10

15,10

6,90

 

0,19

0,73

0,09

0,46

0,79

108,0

1702,0

190,0

30,0

Tubifex sp,

 

46,10

15,10

 

 

0,19

0,73

 

 

 

 

 

 

 

Zophobas morio

 

43,13

40,80

3,50

 

0,12

0,83

 

 

 

 

 

 

 

Zophobas morio

 

46,79

42,04

2,38

5,76

0,04

0,56

 

 

 

 

 

 

 

 

2013-2019  SQUAMATA, the herp land!   Squamata.it, sponsored by HerpStore.it